References: Overview, (1) a Wiki-like working-draft, (2) Speculations, and a working paper.
The first draft of “Just the numbers” was written in March 2012. Since that time there have been small edits and updates.
The Planck Length: What is it? First, for over 100 years, the Planck Length was virtually ignored. Today it is getting more and more attention.
Second, there is the technical definition:
Third, there is an historic perspective. Developed by Max Planck, he took the speed of light in a vacuum, his own Planck constant, and the gravitational constant to distill the smallest possible length in the universe. Conceptually, nothing could be smaller. So, it is not a point. It has a specific length. Some might say, “It’s a special kind of point.” We do not. After two years of thought on the matter, we are slowly deleting all references to a point. The academic community knows a lot about points, but not enough. For our purposes we have begun to refer to it as “the simplest possible vertex in a point-free geometry.” It is a pre-structure structure in a point-free domain that becomes the foundation for points, lines, triangles and all three-dimensional objects. Our simple guess is that this pre-structure is the range between notations 1 and 60-to-65.
Begin at the Planck Length and simply multiply it by two over and the results by 2 and do that over and over again. Called base-2 exponential notation, it creates a scale or order of magnitude. Each doubling of that very special measurement, 1.616199(97)×10^{-35}meters creates something. Each doubling is also referred to as a layer, notation, or step.
Powers-of-two and exponentiation based on the Planck length. Herein it is referred to as Base-2 Exponential Notation (B2EN). We will see the universe, from the smallest to the largest measurement of a length, using base-2. It is more meaningful than using base-ten scientific notation because B2EN renders greater granularity; and, although superimposed by us on the universe, it renders a necessary relationality through nested geometries.
This project originated within five high-school geometry classes in December 2011. In looking at the five platonic solids, particularly the tetrahedron, the question was asked, “How far within could one go before hitting the Planck Length?”
Within a tetrahedron are four half-size tetrahedrons and an octahedron. Within that octahedron there are six half-size octahedrons and eight half-size tetrahedrons. Within both objects the edges can seemingly be divided in half and a new set of smaller objects observed. It would appear to be endless. Yet, unlike the limitless paradox introduced of Zeno, (ca. 490 BC – ca. 430 BC), we now have the Planck Length as a limit. Mathematically defined in and around 1899, the Planck Length was largely ignored by the scientific community and even today it has not been universally accepted.
1.616199(97)x10^{-35} meters: We initially started by looking at the online references to the Planck length. In March 2012, there were just 276 Google links to that number (virtually none). Over the next few years, we suspect those references will grow substantially. Our guess is that it is one of the more important concepts and physical numbers that in some special ways begin to define space and time.
In our simple exercise, we take the Planck length and multiply it by 2, until we reach something that is measurable today (the diameter of a proton), then continue multiplying. Each notation provides a range of sizes that necessarily includes everything in the known universe. Eventually we come to the largest measurement of a length, the Observable Universe. In one set of calculations, it only required 202+ notations or doublings. Yet, we have also received excellent guesses based on calculations up to 206.
The work is displayed five columns. The first column is a Planck number based on the number of times the Planck length has been multiplied. The second column is the number of base-ten notations. The third column is the number of vertices, the powers of two. The fourth column is for the incremental increase in size or length. And, the fifth column will be used for simple reflections.
B2EN | B10SN | Points, vertices or doublings | Length (meters) | Discussions, Examples,Information, Speculations: |
0 | 1 | 2^0=1 | 1.616199(97)×10^{-35}m | At the Planck Length, though it is a truly just a concept, let us take it as a given and that it is a special kind of vertex that is pointlike. |
1 | 1 | 2^1=2 | 3.23239994×10^{-35}m | At the first notation, there are two vertices. The shortest possible line, the conceptual beginnings of a string and a simple relation. We are a long way from knowing where the strings of string theory come into this picture. It can be a two-dimensional object, a circle and a 2-D sphere. With each new doubling this notation is within its initial conditions. This is source code. Also, we are exploring in what ways it could be a type of perfection. In 1944, Max Planck in a speech in Florence, Italy, said, “All matter originates and exists only by virtue of a force which brings the particle of an atom to vibration and holds this most minute solar system of the atom together. We must assume behind this force the existence of a conscious and intelligent mind. This mind is the matrix of all matter.” (The Nature of Matter, Archiv zur Geschichte der Max-Planck-Gesellschaft, Abt. Va, Rep. 11 Planck, Nr. 1797, 1944) |
2 | 1 | 2^2=4 | 6.46479988×10^{-35}m | At the second notation there are four vertices. The first truly three-dimensional expression. All still within their sphere, one might think there are several logical possibilities, another sphere, a longer line, a jagged line or a tetrahedron. It may be true that the tetrahedron and the first three dimensions of space are the most simple and perfect. |
3 | 2 | 2^3=8 | 1.292959976×10^{-34}m | At the third doubling there are eight vertices. Logical possibilities seem to expand dramatically. With five vertices two abutting tetrahedrons could take shape. With six vertices an octahedron could emerge. With seven vertices, a pentastar (tetrahedral pentagon) could emerge. With all eight vertices, a cube or hexahedron could be created. The simple tetrahedral-octahedral chain begins to manifest with just eight vertices. |
4 | 2 | 2^4=16 | 2.585919952×10^{-34}m | At the fourth doubling there are sixteen vertices. If any one of the vertices were to become a center vertex, and 10 vertices are extended from it, a tetrahedral icosahedron emerges. And with the icosahedron, Among the many possibilities, in another configuration, a cluster of four polytetrahedral clusters (a total of 20 tetrahedrons) begin to emerge and completes with twenty vertices (picture to be added). These vertices could also divide the edges of the internal four tetrahedrons and one octahedron. If the focus was entirely within the octahedron, the first shared center vertex of the octahedron would begin to be defined and by the 18th vertex the fourteen internal parts, eight tetrahedrons (one in each face) and the six octahedrons (one in each corner) would be defined (picture to be added). |
5 | 2 | 2^5=32 | 5.171839904×10^{-34}m | At the fifth notation, there are 32 vertices. With twenty vertices a simple dodecahedron is possible; all five platonic solids have manifest. The tetrahedral-octahedral chain could now manifest with seven octahedrons and fourteen tetrahedrons. |
6 | 3 | 2^6=64 | 1.0343679808×10^{-33}m | At the sixth notation, there are 64 vertices. With just 43 of those vertices a hexacontagon (or Pentakis dodecahedron) could be created. It has 12 polytetrahedral clusters on the surface with an icosahedron in the middle. |
7 | 3 | 2^7=128 | 2.0687359616×10^{-33}m | The seventh doubling, with 128 vertices. The results are not. Simple exponential notation based on the power of two is well documented. Of course, by using base-2 exponential notation and starting at the Planck length, necessary relations might be intuited. |
8 | 3 | 2^8=256 | 4.1374719232×10^{-33}m | Geometric complexification, morphism, The nature of the perfect fittings. Imperfect fittings |
9 | 3 | 2^9=512 | 8.2749438464×10^{-33}m | In that pentastar there is a 7.368 degree spread between tetrahedrons. That do not fit perfectly. That measurement is also 1.54 steradians and the effect within the icosahedron increases. |
10 | 4 | 1024 | 1.65498876928×10^{-32}m | At the tenth doubling, look within an optimized Pentakis Dodecahedron where there is an outer layer of sixty tetrahedrons (twelve imperfect pentastars), an inner layer of irregular tetrahedrons, and an icosahedron of 20 tetrahedrons in the center. All are imperfect. Yet, within each tetrahedron there is a little perfection. There are four half-sized tetrahedrons and an octahedron all seated perfectly together. Within that octahedron, there are six octahedra and eight tetrahedra . |
11 | 4 | 2048 | 3.30997752836×10^{-32}m |
Finite subdivision rule |
12 | 4 | 4096 | 6.61995505672×10^{-32}m | _ |
13 | 5 | 8192 | 1.323991011344×10^{-31}m | _ |
14 | 5 | 16,384 | 2.647982022688×10^{-31}m | _ |
15 | 5 | 32,768 | 5.295964045376×10^{-31}m | _ |
16 | 6 | 65,536 | 1.0591928090752×10^{-30}m | _ |
17 | 6 | 131,072 | 2.1183856181504×10^{-30}m | _ |
18 | 6 | 262,144 | 4.2367712363008×10^{-30}m | _ |
19 | 6 | 524,288 | 8.4735424726016×10^{-30}m | _ |
20 | 7 | 1,048,576 | 1.69470849452032×10^{-29}m | _ |
21 | 7 | 2,097,152 | 3.38941698904064×10^{-29}m | more information |
22 | 7 | 4,194,304 | 6.77883397808128×10^{-29}m | _ |
23 | 8 | 8,388,608 | 1.355766795616256×10^{-28}m | _ |
24 | 8 | 16,777,216 | 2.711533591232512×10^{-28}m | _ |
25 | 8 | 33,554,432 | 5.423067182465024×10^{-28}m | _ |
26 | 9 | 67,108,864 | 1.0846134364930048×10^{-27}m | _ |
27 | 9 | 134,217,728 | 2.1692268729860096×10^{-27}m | |
28 | 9 | 268,435,456 | 4.3384537459720192×10^{-27}m | _ |
29 | 9 | 536,870,912 | 8.6769074919440384×10^{-27}m | _ |
30 | 10 | 1,073,741,824 | 1.73538149438880768×10^{-26}m | _ |
31 | 10 | 2,147,483,648 | 3.47076299879961536×10^{-26}m | _ |
32 | 10 | 4,294,967,296 | 6.94152599×10^{-26}m | _ |
33 | 11 | 8,589,934,592 | 1.3883052×10^{-25}m | _ |
34 | 11 | 1.7179869×10^{11} | 2.7766104×10^{-25}m | Actual number: 17,179,869,184 vertices |
35 | 11 | 3.4359738×10^{11} | 5.5532208×10^{-25}m | 34,359,738,368 |
36 | 12 | 6.8719476×10^{11} | 1.11064416×10^{-24}m | 68,719,476,736 |
37 | 12 | 1.3743895×10^{12} | 2.22128832×10^{-24}m | 137,438,953,472 |
38 | 12 | 2.7487790×10^{12} | 4.44257664×10^{-24}m | 274,877,906,944 |
39 | 12 | 5.4975581×10^{11} | 8.88515328×10^{-24}m | 549,755,813,888 |
40 | 13 | 1.0995116×10^{12} | 1.77703066×10^{-23}m | 1,099,511,627,776 |
41 | 13 | 2.1990232×10^{12} | 3.55406132×10^{-23}m | 2,199,023,255,552 |
42 | 13 | 4.3980465×10^{12} | 7.10812264×10^{-23}m | 4,398,046,511,104 |
43 | 14 | 8.7960930×10^{12} | 1.42162453×10^{-22}m | 8,796,093,022,208 |
44 | 14 | 1.7592186×10^{13} | 2.84324906×10^{-22}m | 17,592,186,044,416 |
45 | 14 | 3.5184372×10^{13} | 5.68649812×10^{-22}m | 35,184,372,088,832 |
46 | 15 | 7.0368744×10^{13} | 1.13729962×10^{-21}m | 70,368,744,177,664 |
47 | 15 | 1.4073748×10^{14} | 2.27459924×10^{-21}m | 140,737,488,355,328 |
48 | 15 | 2.8147497×10^{14} | 4.54919848×10^{-21}m | 281,474,976,710,656 |
49 | 15 | 5.6294995×10^{14} | 9.09839696×10^{-21}m | 562,949,953,421,312 |
50 | 16 | 1.12589988×10^{15} | 1.81967939×10^{-20}m | 1,125,899,906,842,624 |
51 | 16 | 2.25179981×10^{15} | 3.63935878×10^{-20}m | 2,251,799,813,685,248 |
52 | 16 | 4.50359962×10^{15} | 7.27871756×10^{-20}m | 4,503,599,627,370,496 |
53 | 17 | 9.00719925×10^{15} | 1.45574351×10^{-19}m | 9,007,199,254,740,992 |
54 | 17 | 1.80143985×10^{16} | 2.91148702×10^{-19}m | 18,014,398,509,481,984 |
55 | 17 | 3.60287970×10^{16} | 5.82297404×10^{-19}m | 36,028,797,018,963,968 |
56 | 18 | 7.205759840×10^{16} | 1.16459481×10^{-18}m | 72,057,594,037,927,936 |
57 | 18 | 1.44115188×10^{17} | 2.32918962×10^{-18}m | 144,115,188,075,855,872 |
58 | 18 | 2.88230376×10 ^{17} | 4.65837924×10^{-18}m | 288,230,376,151,711,744 |
59 | 18 | 5.76460752×10^{17} | 9.31675848×10^{-18}m | 576,460,752,303,423,488 |
60 | 19 | 1.15292150×10^{18} | 1.86335169×10^{-17}m | 1,152,921,504,606,846,976 |
61 | 19 | 2.30584300×10^{18} | 3.72670339×10^{-17}m | 2,305,843,009,213,693,952 |
62 | 19 | 4.61168601×10^{18} | 7.45340678×10^{-17}m | 4,611,686,018,427,387,904 (Quarks) |
63 | 20 | 9.22337203×10^{18} | 1.49068136×10^{-16}m | 9,223,372,036,854,775,808 (Quarks, Photons) |
64 | 20 | 1.84467440×10^{19} | 2.98136272×10^{-16}m | 18,446,744,073,709,551,616 (Neutrinos, Quarks, Photons) |
65 | 20 | 3.68934881×10^{19} | 5.96272544×10^{-16}m | 36,893,488,147,419,100,000 |
66 | 21 | 7.37869762×10^{19} | 1.19254509×10^{-15}m | 73,786,976,294,838,200,000 (Protons, Fermions) |
67 | 21 | 1.47573952×10^{20} | 2.38509018×10^{-15}m | 147,573,952,589,676,000,000 (Neutrons) |
68 | 21 | 2.95147905×10^{20} | 4.77018036×10^{-15}m | 295,147,905,179,352,000,000 (Helium) |
69 | 21 | 5.90295810×10^{20} | 9.54036072×10^{-15}m | 590,295,810,358,705,000,000 (Electron) |
70 | 22 | 1.18059162×10^{21} | 1.90807214×10^{-14}m | 1,180,591,620,717,410,000,000 (Aluminum) |
71 | 22 | 2.36118324×10^{21} | 3.81614428×10^{-14}m | 2,361,183,241,434,820,000,000 (Gold) |
72 | 22 | 4.72236648×10^{21} | 7.63228856×10^{-14}m | 4,722,366,482,869,640,000,000 |
73 | 23 | 9.44473296×10^{21} | 1.52645771×10^{-13}m | 9,444,732,965,739,290,000,000 |
74 | 23 | 1.88894659×10^{22} | 3.05291542×10^{-13}m | 18,889,465,931,478,500,000,000 |
75 | 23 | 3.77789318×10^{22} | 6.10583084×10^{-13}m | 37,778,931,862,957,100,000,000 |
76 | 24 | 7.55578637×10^{22} | 1.22116617×10^{-12}m | 75,557,863,725,914,300,000,000 |
77 | 24 | 1.51115727×10^{23} | 2.44233234×10^{-12}m | 151,115,727,451,828,000,000,000 |
78 | 24 | 3.02231454×10^{23} | 4.88466468×10^{-12}m | 302,231,454,903,657,000,000,000 |
79 | 24 | 6.04462909×10^{23} | 9.76932936×10^{-12}m | 604,462,909,807,314,000,000,000 |
80 | 25 | 1.20892581×10^{24} | 1.95386587×10^{-11}m | 1,208,925,819,614,620,000,000,000 |
81 | 25 | 2.41785163×10^{24} | 3.90773174×10^{-11}m | 2,417,851,639,229,250,000,000,000 |
82 | 25 | 4.83570327×10^{24} | 7.81546348×10^{-11}m | 4,835,703,278,458,510,000,000,000 |
_ | _ | _________________ | ______________________ | ________________________ |
83 | 26 | 9.67140655×10^{24} | .156309264 nanometers | 9,671,406,556,917,030,000,000,000 |
or 1.56309264×10^{-10}m | ||||
84 | 26 | 1.93428131×10^{25} | .312618528 nanometers | 19,342,813,113,834,000,000,000,000 |
85 | 26 | 3.86856262×10^{25} | .625237056 nanometers | 38,685,626,227,668,100,000,000,000 |
_ | _________________ | ______________________ | ________________________ | |
86 | 27 | 7.73712524×10^{25} | 1.25047411 nanometers or | 77,371,252,455,336,200,000,000,000 |
or 1.25047411×10^{-9}m | ||||
87 | 27 | 1.54742504×10^{26} | 2.50094822 nanometers | 154,742,504,910,672,000,000,000,000 |
88 | 27 | 3.09485009×10^{26} | 5.00189644 nanometers | 309,485,009,821,345,000,000,000,000 |
_ | _________________ | ______________________ | ________________________ | |
89 | 28 | 6.18970019×10^{26} | 10.0037929 nanometers | 618,970,019,642,690,000,000,000,000 |
or 1.00037929×10^{-8}m | ||||
90 | 28 | 1.23794003×10^{27} | 20.0075858 nanometers | 1,237,940,039,285,380,000,000,000,000 |
91 | 28 | 2.47588007×10^{27} | 40.0151716 nanometers | 2,475,880,078,570,760,000,000,000,000 |
92 | 28 | 4.95176015×10^{27} | 80.0303432 nanometers | 4,951,760,157,141,520,000,000,000,000 |
_ | _________________ | ______________________ | ________________________ | |
93 | 29 | 9.90352031×10^{27} | 160.060686 nanometers | 9,903,520,314,283,042,199,192,993,792 |
or 1.60060686×10^{-7}m | ||||
94 | 29 | 1.98070406×10^{28} | 320.121372 nanometers | 19,807,040,628,566,000,000,000,000,000 |
95 | 29 | 3.96140812×10^{28} | 640.242744 nanometers | 39,614,081,257,132,100,000,000,000,000 |
_ | _________________ | ______________________ | ________________________ | |
96 | 30 | 7.92281625×10^{28} | 1.28048549 microns | 79,228,162,514,264,300,000,000,000,000 |
or 1.28048549×10^{-6}m | ||||
97 | 30 | 1.58456325×10^{29} | 2.56097098 microns | 158,456,325,028,528,000,000,000,000,000 |
98 | 30 | 3.16912662×10^{29} | 5.12194196 microns | 316,912,650,057,057,000,000,000,000,000 |
_ | _ | _________________ | ______________________ | ________________________ |
99 | 31 | 6.33825324×10^{29} | 10.2438839 microns | 633,825,300,114,114,700,748,351,602,688 |
or 1.02438839×10^{-5}m | ||||
100 | 31 | 1.26765065×10^{30} | 20.4877678 microns | 1,267,650,600,228,220,000,000,000,000,000 |
101 | 31 | 2.53530130×10^{30} | 40.9755356 microns | 2,535,301,200,456,450,000,000,000,000,000 |
102 | 31 | 5.07060260×10^{30} | 81.9510712 microns | 5,070,602,400,912,910,000,000,000,000,000 |
_ | _ | _________________ | ______________________ | ________________________ |
103 | 32 | 1.01412052×10^{31} | .163902142 millimeters | 10,141,204,801,825,800,000,000,000,000,000 |
or 1.63902142×10^{-4}m | ||||
104 | 32 | 2.02824104×10^{31} | .327804284 millimeters | 20,282,409,603,651,600,000,000,000,000,000 |
105 | 32 | 4.05648208×10^{31} | .655608568 millimeters | 40,564,819,207,303,300,000,000,000,000,000 |
_ | _ | _________________ | ______________________ | ________________________ |
106 | 33 | 8.11296416×10^{31} | 1.31121714 millimeters | 81,129,638,414,606,600,000,000,000,000,000 |
or 1.31121714×10^{-3}m | ||||
107 | 33 | 1.62259276×10^{32} | 2.62243428 millimeters | 162,259,276,829,213,000,000,000,000,000,000 |
108 | 33 | 3.24518553×10^{32} | 5.24486856 millimeters | 324,518,553,658,426,000,000,000,000,000,000 |
_ | _________________ | ______________________ | ________________________ | |
109 | 34 | 6.49037107×10^{32} | 1.04897375 centimeters | 649,037,107,316,853,000,000,000,000,000,000 |
or 1.04897375×10^{-2}m | ||||
110 | 34 | 1.29807421×10^{33} | 2.09794742 centimeters | 1,298,074,214,633,700,000,000,000,000,000,000 |
111 | 34 | 2.59614842×10^{33} | 4.19589484 centimeters | 2,596,148,429,267,410,000,000,000,000,000,000 |
112 | 34 | 5.19229685×10^{33} | 8.39178968 centimeters | 5,192,296,858,534,820,000,000,000,000,000,000 |
___ | ___ | _________________ | ______________________ | ________________________ |
113 | 35 | 1.03845937×10^{34} | 16.7835794 centimeters or | 10,384,593,717,069,600,000,000,000,000,000,000 |
1.67835794×10^{-1}m | ||||
114 | 35 | 2.0769437×10^{34} | 33.5671588 centimeters | 20,769,187,434,139,300,000,000,000,000,000,000 |
115 | 35 | 4.1538374×10^{34} | 67.1343176 centimeters | 41,538,374,868,278,600,000,000,000,000,000,000 |
___ | ___ | _________________ | ______________________ | _____________________ |
116 | 36 | 8.3076749×10^{34} | 1.3426864 meters | 83,076,749,736,557,200,000,000,000,000,000,000 |
or 52.86 inches | ||||
117 | 36 | 1.66153499×10^{35} | 2.6853728 meters | 166,153,499,473,114,000,000,000,000,000,000,000 |
118 | 36 | 3.32306998×10^{35} | 5.3707456 meters | 332,306,998,946,228,000,000,000,000,000,000,000 |
119 | 37 | 6.64613997×10^{35} | 10.7414912 meters | 664,613,997,892,457,000,000,000,000,000,000,000 |
120 | 37 | 1.32922799×10^{36} | 21.4829824 meters | 1,329,227,995,784,910,000,000,000,000,000,000,000 |
121 | 37 | 2.65845599×10^{36} | 42.9659648 meters | 2,658,455,991,569,830,000,000,000,000,000,000,000 |
122 | 37 | 5.31691198×10^{36} | 85.9319296 meters | 5,316,911,983,139,660,000,000,000,000,000,000,000 |
123 | 38 | 1.06338239×10^{37} | 171.86386 meters | 10,633,823,966,279,300,000,000,000,000,000,000,000 |
124 | 38 | 2.12676479×10^{37} | 343.72772 meters | 21,267,647,932,558,600,000,000,000,000,000,000,000 |
125 | 38 | 4.25352958×10^{37} | 687.455439 meters | 42,535,295,865,117,300,000,000,000,000,000,000,000 |
126 | 39 | 8.50705917×10^{37} | 1.37491087 kilometers | 85,070,591,730,234,600,000,000,000,000,000,000,000 |
127 | 39 | 1.70141183×10^{38} | 2.74982174 kilometers | 170,141,183,460,469,000,000,000,000,000,000,000,000 |
128 | 39 | 3.40282366×10^{38} | 5.49964348 kilometers | 340,282,366,920,938,000,000,000,000,000,000,000,000 |
129 | 40 | 6.04462936×10^{38} | 10.999287 kilometers | 680,564,733,841,876,000,000,000,000,000,000,000,000 |
130 | 40 | 1.36112946×10^{39} | 21.998574 kilometers | 1,361,129,467,683,750,000,000,000,000,000,000,000,000 |
131 | 40 | 2.72225893×10^{39} | 43.997148 kilometers | 2,722,258,935,367,500,000,000,000,000,000,000,000,000 |
132 | 40 | 5.44451787×10^{39} | 87.994296 kilometers | 5,444,517,870,735,010,000,000,000,000,000,000,000,000 |
133 | 41 | 1.08890357×10^{40} | 175.988592 kilometers | 10,889,035,741,470,000,000,000,000,000,000,000,000,000 |
134 | 41 | 2.17780714×10^{40} | 351.977184 kilometers | 2,177,807,148,294,000,000,000,000,000,000,000,000,000 |
135 | 41 | 4.355614296×10^{40} | 703.954368 kilometers | 43,556,142,965,880,100,000,000,000,000,000,000,000,000 |
136 | 42 | 8.711228593×10^{40} | 1407.90874 kilometers | 87,112,285,931,760,200,000,000,000,000,000,000,000,000 |
137 | 42 | 1.742245718×10^{41} | 2815.81748 kilometers | 174,224,571,863,520,000,000,000,000,000,000,000,000,000 |
138 | 42 | 3.484491437×10^{41} | 5631.63496 kilometers | 348,449,143,727,040,000,000,000,000,000,000,000,000,000 |
139 | 43 | 6.18970044×10^{41} | 11,263.2699 kilometers | 696,898,287,454,081,000,000,000,000,000,000,000,000,000 |
140 | 43 | 1.23794009×10^{42} | 22,526.5398 kilometers | 1,393,796,574,908,160,000,000,000,000,000,000,000,000,000 |
141 | 43 | 2.47588018×10^{42} | 45 053.079 kilometers | 2,787,593,149,816,320,000,000,000,000,000,000,000,000,000 |
142 | 43 | 4.95176036×10^{42} | 90 106.158 kilometers | 5,575,186,299,632,650,000,000,000,000,000,000,000,000,000 |
143 | 44 | 1.11503726×10^{43} | 180,212.316 kilometers | 11,150,372,599,265,300,000,000,000,000,000,000,000,000,000 |
144 | 44 | 2.23007451×10^{43} | 360,424.632 kilometers | 22,300,745,198,530,600,000,000,000,000,000,000,000,000,000 |
145 | 44 | 4.46014903×10^{43} | 720,849.264 kilometers | 44,601,490,397,061,200,000,000,000,000,000,000,000,000,000 |
146 | 45 | 8.9202980×10^{43} | 1,441,698.55 kilometers | 89,202,980,794,122,400,000,000,000,000,000,000,000,000,000 |
147 | 45 | 1.78405961×10^{44} | 2,883,397.1 kilometers | 178,405,961,588,244,000,000,000,000,000,000,000,000,000,000 |
148 | 45 | 3.56811923×10^{44} | 5,766,794.2 kilometers | 3.56812E+44 |
149 | 46 | 7.13623846×10^{44} | 11,533,588.4 kilometers | 713,623,846,352,979,940,529,142,984,724,747,568,191,373,312 |
150 | 46 | 1.42724769×10^{45} | 23,067,176.8 kilometers | 1.42725E+45 |
151 | 46 | 2.85449538×10^{45} | 46,134,353.6 kilometers | 2,854,495,385,411,910,000,000,000,000,000,000,000,000,000,000 |
152 | 46 | 5.70899077×10^{45} | 92,268,707.1 kilometers | 5.70899E+45 |
153 | 47 | 1.14179815×10^{46} | 184,537,414 kilometers | 1.1418E+46 |
154 | 47 | 2.28359638×10^{46} | 369,074,829 kilometers | 2.2836E+46 |
155 | 47 | 4.56719261×10^{46} | 738,149,657 kilometers | 4.56719E+46 |
156 | 48 | 9.13438523×10^{46} | 1.47629931×10^{12} meters | 9.13439E+46 |
157 | 48 | 1.826877046×10^{47} | 2.95259863×10^{12} meters | 1.82688E+47 |
158 | 48 | 3.653754093×10^{47} | 5.90519726×10^{12} meters | 3.65375E+47 |
159 | 49 | 7.307508186×10^{47} | 1.18103945×10^{13} meters | 7.30751E+47 |
159 | 49 | 7.307508186×10^{47} | 1.18103941 ×10^{13} meters | 730,750,818,665,451,000,000,000,000,000,000,000,000,000,000,000 |
160 | 49 | 1.461501637×10^{48} | 2.36207882 ×10^{13}m | 1.4615E+48 |
161 | 49 | 2.923003274×10^{48} | 4.72415764 ×10^{13}m | 2.923E+48 |
162 | 49 | 5.846006549×10^{48} | 9.44831528 ×10^{13}m | 5.84601E+48 |
163 | 50 | 1.16920130×10^{49} | 1.88966306×10^{14}m | 1.1692E+49 |
164 | 50 | 2.33840261×10^{49} | 3.77932612×10^{14}m | 2.3384E+49 |
165 | 50 | 4.67680523×10^{49} | 7.55865224×10^{14}m | 4.67681E+49 |
166 | 51 | 9.35361047×10^{49} | 1.5117305×10^{15}m | 9.35361E+49 |
167 | 51 | 1.87072209×10^{50} | 3.0234609×10^{15}m | 1.87072E+50 |
168 | 51 | 3.74144419×10^{50} | 6.0469218×10^{15}m | 3.74144E+50 |
169 | 52 | 7.48288838×10^{50} | 1.20938436×10^{16}m | 7.48289E+50 |
170 | 52 | 1.49657767×10^{51} | 2.41876872×10^{16}m | 1.49658E+51 |
171 | 52 | 2.99315535×10^{51} | 4.83753744 ×10^{16}m | 2.99316E+51 |
172 | 52 | 5.98631070×10^{51} | 9.67507488 ×10^{16}m | 5.98631E+51 |
173 | 53 | 1.19726214×10^{52} | 1.93501504 ×10^{17}m | 1.19726E+52 |
174 | 53 | 2.39452428×10^{52} | 3.87002996 ×10^{17}m | 2.39452E+52 |
175 | 53 | 4.78904856×10^{52} | 7.74005992 ×10^{17}m | 4.78905E+52 |
176 | 54 | 9.57809713×10^{52} | 1.54801198×10^{18}m | 9.5781E+52 |
177 | 54 | 1.91561942×10^{53} | 3.09602396×10^{18}m | 1.91562E+53 |
178 | 54 | 3.83123885×10^{53} | 6.19204792×10^{18}m | 3.83124E+53 |
179 | 55 | 7.66247770×10^{53} | 1.23840958×10^{19}m | 7.66248E+53 |
180 | 55 | 1.53249554×10^{54} | 2.47681916×10^{19}m | 1.5325E+54 |
181 | 55 | 3.06499108×10^{54} | 4.95363832×10^{19}m | 3.06499E+54 |
182 | 55 | 6.12998216×10^{54} | 9.90727664×10^{19}m | 6.12998E+54 |
183 | 56 | 1.22599643×10^{55} | 1.981455338×10^{20}m | 1.226E+55 |
184 | 56 | 2.45199286×10^{55} | 3.96291068×10^{20}m | 2.45199E+55 |
185 | 56 | 4.90398573×10^{55} | 7.92582136×10^{20}m | 4.90399E+55 |
186 | 57 | 9.80797146×10^{55} | 1.58516432×10^{21}m | 9.80797E+55 |
187 | 57 | 1.96159429×10^{56} | 3.17032864×10^{21}m | 1.96159E+56 |
188 | 57 | 3.92318858×10^{56} | 6.34065727 ×10^{21}m | 3.92319E+56 |
189 | 58 | 7.84637716×10^{56} | 1.26813145 ×10^{22}m | 7.84638E+56 |
190 | 58 | 1.56927543×10^{57} | 2.53626284×10^{22}m | 1.56928E+57 |
191 | 58 | 3.13855086×10^{57} | 5.07252568×10^{22}m | 3.13855E+57 |
192 | 59 | 6.27710173×10^{57} | 1.01450514×10^{23}m | 6.2771E+57 |
193 | 59 | 1.25542034×10^{58} | 2.02901033×10^{23}m | 1.25542E+58 |
194 | 59 | 2.51084069×10^{58} | 4.05802056×10^{23}m | 2.51084E+58 |
195 | 59 | 5.02168138×10^{58} | 8.11604112×10^{23}m | 5.02168E+58 |
196 | 60 | 1.00433628×10 | 1.62320822×10^{24}m | 1.00434E+59 |
197 | 60 | 2.0086725×10^{59} | 3.24641644×10^{24}m | 2.00867E+59 |
198 | 60 | 4.01734511×10^{59} | 6.49283305×10^{24}m | 4.01735E+59 |
199 | 61 | 8.03469022×10^{59} | 1.29856658×10^{25}m | 8.03469E+59 |
200 | 61 | 1.60693804×10^{60} | 2.59713316×10^{25}m | 1.60694E+60 |
201 | 61 | 3.21387608×10^{60} | 5.19426632 ×10^{25}m | 3.21388E+60 |
_________________ | ______________________ | _____________________________________________ | ||
202 | 61 | 6.42775217×10^{60} | 1.03885326×10^{26} meters | 6.42775E+60 |
203 | 62 | 1.28555043×10^{61} | 2.07770658×10^{26} meters | 1.28555E+61 |
204 | 62 | 2.57110087×10^{61} | 4.15541315×10^{26} meters | 2.5711E+61 |
205 | 62 | 5.14220174×10^{61} | 8.31082608×10^{26} meters | 5.1422E+61 |
206 | 63 | 1.028440348×10^{62} | 1.662165216×10^{27} meters | 1.0284E+62 |
_________________ | ______________________ | _____________________________________________ | ||
PL-EOU | 1 – 205.1 | From the Planck Length | 8.79829142×10^{26} meters |